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A~tract--Laminar flow of a liquid, down an inclined wall with sinusoidal corrugations, is considered. 
A linear analysis, valid for small-amplitude disturbances but arbitrary wavelength and Re number, leads 
to an Orr-Sommerfeld type equation with nonhomogeneous boundary conditions. The free-surface 
amplitude and phase relative to the wall are examined. In a range of Re numbers, a resonance phenomenon 
is calculated, leading to amplification of the wall corrugations. This behavior has not been encountered 
in previous analyses of thin film flow, based on the Stokes approximation. Copyright © 1996 Elsevier 
Science Ltd. 

Key Words: film flow, wall corrugations, free surface resonance 

1. I N T R O D U C T I O N  

The flow of  a liquid film down an inclined wall is a topic with intriguing theoretical ramifications 
and many useful applications. Flow of this kind occurs in heat-transfer equipment, such as falling 
film evaporators  and condensers. It is also of  interest with relation to mass-transfer in absorption 
columns using packing, in particular under conditions away from flooding, where the shear 
imposed by the countercurrent gas flow can be neglected (see for example the liquid side, 
mass-transfer correlations proposed by Fair and Bravo 1990). 

Fundamental  studies of  this flow date back to the classical work of Kapitsa and Kapitsa (1949) 
and concentrate on the linear stability of  the flat film and the nonlinear wave dynamics. Early work 
in this area is summarized in a review article by Fulford (1964) and an exposition of  recent results, 
based on long-wave expansions of  the Navier-Stokes equations, is provided by Chang (1994). 

A variation of  this problem involves film flow down a wavy- - ra ther  than a flat--wall.  The main 
practical interest stems from efforts to enhance interfacial transfer rates through modifications of  
the basic flow field imposed by the wall undulations. Structured packing (consisting of  corrugated 
metal sheets) offers a typical example. 

Studies of  flow down inclined, periodic walls are comparatively limited. Wang (1981) performed 
an asymptotic analysis for sinusoidal wall with small-amplitude variations. Dassori et  al. (1984) 
extended the analysis to the separated flow of two fluids through a sinusoidal channel. Pozrikidis 
(1988), using a boundary-integral method appropriate for creeping flow, numerically computed 
results for wall variations of  arbitrary amplitude and shape. 

Shetty and Cerro (1993) proved (by asymptotic analysis valid in the limit of  negligible inertia 
and capillary effects) that the flow of  a viscous liquid down a wavy surface obeys a local Nusselt 
solution with continuously varying inclination when the film thickness is much smaller than the 
amplitude and wavelength of  the solid waves. Agreement with their measurements, and the 
measurements taken by Zhao and Cerro (1992), was more or less satisfactory depending on the 
validity of  the above assumptions. 

All the aforementioned works are applicable to flow with Re number equal to zero, thus 
neglecting inertial effects. They share the common result that the free surface profile has a phase 
shift relative to the wall and an amplitude that is always smaller or equal to that of  the wall 
undulations. 

The complementary problem of inertia dominated flow over a wavy bot tom has been tackled 
in terms of inviscid theory. Horizontal,  uniform base flow was considered, and the results were 
used mainly as an input for computat ions of  sediment transport  in rivers and Bragg scattering of 
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surface waves (Kennedy 1963; Mei 1969; Miles 1986; Bontozoglou et al. 1991; Sammarco et al. 
1994). 

Linear inviscid theory predicts that for a liquid velocity, U, equal to 

U = (g/k)tanh kh, [1] 

resonance takes place between the stationary surface wave and the bot tom forcing, leading to 
free-surface amplitude considerably larger than that of the wall. Terms h and k in [1] are the film 
thickness and wavenumber of  the wall corrugations respectively. It is not presently known- -and  
is of  evident impor tance--whether  this behavior has a counterpart  in the viscous flow of thin films 
and whether it manifests itself in flows with inclination relative to the horizontal. 

In the present work, it is attempted to answer these questions by considering liquid flow down 
a sinusoidal wall of  arbitrary orientation. The wall amplitude, a, is assumed to be very small 
compared to the thickness of  the liquid film. However, no assumption is made about  the wavelength 
of the corrugations and the Re number of  the flow, apart  from the fact that it is taken to be laminar. 

Flow variables are expanded with respect to the small parameter  E = a/h and the zero and 
first order problems are considered. The latter is solved numerically by a finite difference 
method. 

2. F O R M U L A T I O N  OF THE PROBLEM 

Two-dimensional flow is considered, down a wall with an average inclination q~ relative to the 
vertical direction (figure 1), The wall is covered with small-amplitude sinusoidal corrugations at 
right angles to the flow direction. The flow is described by an x, y coordinate system, with y normal 
to the mean flow direction. The beginning of the y-axis is set at the mean wall level and the 
corrugations are described by the equation 

w(x)  = a cos kx .  [2] 

The mean film thickness is equal to h and the free surface of the liquid is located at 

~(x) = h + J(x).  [31 

The stationary free surface shape, J(x) ,  is to first order described by the linear relation 

f ( x )  = [la e '*~ [4] 

where/~ is the amplification of the wall corrugations and is in general complex. This expression 
corresponds to waves of  the same wavelength as the disturbances but of  arbitrary amplitude and 
phase relative to the wail. 

Unit  vectors n and t, locally normal and tangential to the free surface, are defined in terms of 
the free surface slope, f ' ( x ) ,  by the expressions 

t = ( 1 , f ' ) / ~ / l  + f ' :  [51 

n = ( f ' ,  --  1 ) / x / 1  + f ' : .  [61 

The flow is described by the continuity equation and the two components of  the Navier-Stokes 
equation. Boundary conditions are no-slip on the wall, 

u = v = 0 o n y  = w(x).  [7] 

Also, the velocity normal to the stationary free surface is zero 

u . n  = 0 o n y  = q ( x )  [8] 

where u = (u, v). Shear and normal stresses balance to zero on the free surface giving the equations 

(¢r.n)-t  = 0 [9l 

f,, 
(a.n) .n = -- P0 + s(1 +f,2)3,2 • [10] 
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Term p0 is the ambient pressure, s if the surface tension and ~ is the stress tensor, defined in terms 
of  the rate of  strain tensor, e, and Kronecker  ~i as: 

= -- p~5 + 2fte. [11] 

The perturbation expansion performed is based on the small variable, e, defined as 

E = a / h .  [12] 

Thus, it is assumed that the amplitude of  the wall corrugations is much smaller than the film 
thickness. A stream function, q~, is defined and expanded in a perturbation series in the small 
variable E: 

= ~01 + Eqj,) + . . . .  . [13] 

The zero-order problem corresponds to laminar flow over a flat surface, with the familiar Nusselt 
solution 

V~°'(y) = ~ [14] 
# 

u'°'(y) = ~ n y  - [15] 

where gx = g cos q~ is the component  of  gravity along the x-axis. Following the linear response of  
[4], the first order stream-function term is expressed as 

W°I(x, y) = ~(y)  e ~k~. [16] 

Equation [16] is substituted in the two components of  the Navier-Stokes equation, which are 
subsequently combined to eliminate the pressure and lead to an ordinary differential equation. The 
variables are nondimensionalized by using the mean film thickness, h, as the characteristic length, 
the volume flow rate per unit span, q, as the characteristic value for the stream-function and q / h  

~ Y 

x 

Figure 1. Sketch of the flow with all the pertinent parameters. 
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as the characteristic velocity. The resulting dimensionless equation is 

( ') (D 2 -- k2)20 = uo(D 2 -- k2)~b - Uo"0 [171 

where Re is the Reynolds number, defined as 

Re = pq - P2g"h3 
# 3p 2 [18] 

and D is the differential operator d/dy. For conciseness, the same symbols are retained for the now 
dimensionless variables y, D, k, ~ and u0. 

Equation [17] is the familiar Orr-Sommerfeld equation of linear stability without the phase 
velocity parameter. However, the present problem is not an eigenvalue problem, since not all 
boundary conditions are homogeneous. 

According to a well-known technique, the boundary conditions along the wall and the free 
surface are expanded in Taylor series around the respective mean levels (y = 0 and y = 1). The 
final expressions are: 

~O(0) = 0 [19a] 

0'(0) = - 3 [19b] 

~O(l) = - 3fl/2 [19c] 

~ " ( 1 )  - -  k 2 ~ ( 1 )  = 3f l  [19d] 

i ,, _ f l ( s k2+  g~.~ 
½ Re~b'(1) + ~ ~9' (1) -- ik~'(1) = \P-~ g L/ '  [19el 

The two dimensionless groups that were used by Wang (1981) in the description of creeping flow 
are-- in  the present notat ion-- the  dimensionless wavenumber, k = 2~h/L, and the term 

sk: g , )  [20] 
Z 

In the present approach, these groups are supplemented by the Reynolds number of the flow, which 
appears in the differential equation and the boundary condition [19e]. 

3. NUMERICAL SOLUTION 

Equation [17] with the boundary conditions [19a]-[19e] is discretized, by N equally spaced points 
from wall to free surface, and is solved by a centered, finite-difference scheme. At each point, the 
value of  the unknown stream function amplitude, ~b(y), is split into a real and an imaginary part. 
Four additional (ficticious) points-- two on each side of the y region--are added to discretize the 
third and fourth derivatives. The last two unknowns are the real and imaginary part of the free 
surface amplitude, ft. Thus, the total number of unknowns is 2(N + 5). Equation [17] is applied 
to the N points across the liquid film and the boundary conditions provide another five equations. 
Setting the real and imaginary parts to zero leads to 2 (N + 5) linear algebraic equations in the 
unknowns. 

The value of N = 21 was used for the derivation of the numerical results presented. Test runs 
performed with finer discretization ( N =  41, 61) indicated that the solution with 21 nodes is 
accurate enough and the additional computational load is not justified for the purposes of the 
present work. This is demonstrated in figure 2, where representative points--computed with 
N = 41--coincide with the rest of the results. 
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Figure 2. Comparison of the free surface amplification predicted by laminar and by creeping-flow theory 
for L = 0.002 m and ¢p = 60 °. Circles correspond to results using a discretization of N = 41 points across 

the film. 

4. RESULTS 

Flow of  water at temperature 20°C is used as the case study. The range of  Re numbers 
investigated extends from 0 to 400. This choice exausts the region where a laminar solution is 
expected to offer realistic estimates. It may actually be argued that, at the higher Re numbers 
considered, the base flow will be wavy because of  the growth of  linearly unstable disturbances 
independent of the corrugated wall. However, in the linear approximation the two phenomena are 
separable. Therefore, the present analysis is still valid and the final flow is the result of  linear 
superposition. 

Different inclinations of  the corrugated wall were examined. It turns out that the outcome is 
qualitatively similar for all but the almost horizontal case. Therefore, detailed results are presented 
only for the representative case of a wall at an angle (p = 60 ° with the vertical. The parameters 
examined are the free surface amplification, fl, and the phase shift, Y, relative to the wall 
corrugations. 

In the limit of  Re = 0, the results of Wang (1981) are recovered. However, for nonzero Re, a 
totally different behavior is computed. In particular, a region of Re numbers exists, for which the 
interfacial amplitude is significantly higher than that of  the wall corrugations. This phenomenon 
corresponds to an amplification of  the wall structure by the flow and does not appear in 
computations based on the Stokes flow assumption. 

A comparison of representative results calculated by Stokes flow and by the present approach 
appears in figure 2. The independent variable is the liquid film thickness (proportional to q~/3 or 
ReV3), and the specific case corresponds to a wall covered with sinusoidal waves with wavelength 
equal to 0.002 m. 

In the Stokes limit, the free surface amplification, fl, drops asymptotically to zero with increasing 
liquid film thickness. This is a universal characteristic of  creeping flow, verified by the asymptotic 
analysis of  Wang (1981) for infinitesimal waves and by the numerical computations of Pozrikidis 
(1988) for large-amplitude corrugations. The characteristic dimensionless quantity of this 
asymptotic change is the ratio of  liquid film height to wavelength of corrugations. For example, 
for h/L of  order one, the free surface amplitude is practically equal to zero. It is noted that the 
Re number depends on h, but not on L. Therefore, when considering a wall with very short waves 
the Stokes behavior is compressed to the beginning of  the y-axis and the free surface is flat for 
small flow rates. 
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The results for laminar flow are computed by using, in [17] and [19a]-[19e], the value of the Re 
number corresponding to base flow with film thickness, h. As seen in figure 2, the computations 

with Re = 0 and Re > 0 coincide in the limit h - > 0. The rapid approach of the free surface 
amplitude to zero is indicative of the limited significance of wall undulations in Stokes flow. 

The above picture changes drastically for thicker liquid films (higher Re number), where a 
significant amplification (fl > 1) appears in the calculation with nonzero inertia. This behavior is 
reminiscent of the resonance of horizontal inviscid flow, described in the introduction. It is noted 
that, in the inviscid case, crossing of the resonance conditions is accompanied by an 180" change 
of the wave phase. More specifically, the interface is 180' out of phase at small liquid velocities 
and then shifts in phase with the wall corrugations (Kennedy 1963). As will be shown next, a similar 
discontinuity in phase shift is calculated in the present case. 
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Figure 3. (a) The free surface amplification as a function of Re number, for five different wall wavelengths. 
(b) The free surface phase-shift as a function of Re number, for five different wall wavelengths. 
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A systematic investigation of  the effect of wall wavelength on the amplitude and phase-shift of 
the free surface is presented (always for a wall with ~p = 60 ° to the vertical) in figure 3(a),(b). Results 
for five representative wavelengths, covering one order of  magnitude, are plotted. Maximum 
amplification appears for a wavelength roughly equal to 0.002 m. For shorter waves, the 
resonant-like behavior is retained with gradually decreasing peak. On the contrary, for longer 
waves, the Re range with high amplitudes becomes wider and the sharpness of the interaction 
rapidly diminishes. 

The phase of  the free surface relative to the wavy wall is depicted in figure 3(b), and has a far 
more complicated behavior in the laminar than in the zero-Re flow. For  the more interesting case 
of  near-resonance, the free surface lags behind the wall (7 < 0) for small Re, reaches a maximum 
value and then sets up to return to zero. In the limit of Stokes flow, previous investigators noted, 
indeed, an asymptotic approach to V = 0 with increasing film thickness. However, for Re > 0, 
figure 3(b) indicates that 7 levels off to a value around - 4 0  ° irrespective of  the wavelength of  
the corrugations. As the resonance conditions are approached, ~ drops to - 9 0  ° and jumps in a 
dicontinous way to + 90 °. Finally, it rapidly levels off to a value between - 3 0  ° and - 4 0  °, again 
roughly independent of  wavelength. 

An inspection of  figure 3(a) and (b) shows that the discontinuous jump in the value of  7 occurs 
at the same Re number which witnesses maximum amplification. The absolute value of  the jump 
is again 180 °, though the phase before and after the transition does not remain constant. The 
picture which emerges is that, with increasing Re number, a resonance interaction--similar to the 
classical behavior of  inviscid, uniform, horizontal flow--is recovered. 

An interesting difference in scale between the two phenomena must be noted; the inviscid solution 
is of  practical significance for liquid depths at least of  the order of  fraction of  a meter. Therefore, 
the stationary free surface disturbances can be accurately described as gravity waves. In the present 
case, the wavelengths of  interest are 2-3 orders of  magnitude smaller and the film thickness is even 
less. As a result, surface tension--rather than gravity--is the relevant restoring force. This is evident 
from the observed insensitivity of  the results to the slope of the wall. 

Longer wall waves create weak free surface maxima at smaller Re. In such cases (results for 
L = 0.005 and 0.010 m in figure 3 are typical), the surface phase anticipates the wall (~ > 0) and 
the discontinuous jump (characteristic of  resonance behavior) does not occur. However, even for 
these relatively long disturbances, there is a marked deviation between laminar and creeping 
solution. This result is borne out by a comparison for L = 0.01 m, shown in figure 4(a) and (b). 
Indeed, the two solutions coincide in amplitude and phase up to a film thickness roughly equal 
to 0.2 mm and then suddenly deviate at the onset of the weak resonance. 

As previously noted, the near-horizontal inclination is the only one for which somewhat different 
results are calculated. To indicate this, the maxima of free-surface amplifications (i.e. the 
coordinates of the peaks in figure 3(a)) are plotted in figure 5 as a function of  corrugation 
wavelength, for a wall with inclination 0, 60 and 89.43 ° relative to the vertical direction. 

The maximum amplitudes, appearing in figure 5, practically coincide in the first two cases of 
a vertical and of  an inclined wall. The overall maximum in the free-surface amplitude appears at 
the same wavelength. Its value abruptly drops to zero for shorter waves and asymptotically 
approaches the value one for waves longer than the resonant. This asymptotic behavior, combined 
with the observation tha t - - for  longer waves--the phase-shift is practically zero (see figure 3(b)), 
leads to the conclusion that, in these cases, the free surface is a replica of  the wall morphology. 
As with all the results of  the present work, this conclusion is valid in the limit of  wall amplitude 
small relative to the film thickness. 

For  the near-horizontal wall, it is observed (again from figure 5) that maximum amplification 
occurs for longer waves (L = 0.008 m). These waves are expected to be influenced to a small extent 
by the restoring force of  gravity at right angles to the flow direction. The maximum free- 
surface amplitude again drops to zero for shorter corrugations, but, in the opposite limit of  
longer waves, there is a persistant amplification extending deep into the capillary-gravity wave 
regime. 

It is noted that points in figure 5 have different Re numbers. The Re number corresponding to 
maximum amplification of  a specific wall wave is shown, for the three different inclinations, in 
figure 6. The resonance Re number is seen to decrease abrupt ly--f rom a large value for very short 
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Figure 4. (a) Comparison of  the free surface amplification predicted by laminar and by creeping-flow 
theory for L = 0.010 m and ~0 = 60% (b) Comparison of the free surface phase-shift predicted by laminar 

and by creeping-flow theory for L = 0.010 m and ~p = 60'. 

corrugations--and approach an almost constant smaller value for longer waves. Again the 
behavior is the same for all but the near-horizontal inclination. 

A mechanism responsible for the above described phenomenon is sought, in terms of resonant 
forcing. Following the inviscid theory of uniform, horizontal flow, it is suggested that energy is 
fed from the wavy wall to the free-surface structures when the flow velocity of the film agrees with 
the natural phase velocity of the waves. To put this suggestion in quantitative form, the mean liquid 
velocity, q/h, is chosen as a representative film velocity. The liquid flow rate, q, used (q = Re.v) 
is the value corresponding to resonance. The phase speed of free surface waves--as described by 
the equation 

c=l~sin~a+~--kp)tanh(kh) [211 
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Figure 5. The maximum free surface amplification as a function of wall wavelength. 

of  inviscid water wave theory-- is  compared with the mean film velocity in figure 7. It is readily 
observed that the two velocities follow a similar behavior, and are very close in the region of  
wavelengths where strong resonance is calculated. This agreement provides evidence in support  of  
the above tentative mechanism. It is stressed though that (unlike the inviscid case) the liquid flow 
may not safely be characterized by a single velocity. 

5. C O N C L U D I N G  REMARKS 

Laminar  flow of  a liquid down an inclined corrugated wall is considered. An analysis is 
performed, valid for small-amplitude disturbances but arbitrary wavelength and Re number. An 
amplification of the wall corrugation at the free surface is calculated under certain conditions. The 
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variation of amplification ratio with the liquid flow rate points to a resonance phenomenon and 
a tentative mechanism is suggested. 

For  vertical and inclined walls, wavelengths in the range of 0.001-0.005 m are the most active 
in producing strong interaction with the free surface. The picture which emerges is that shorter 
corrugations are smoothed out be the flow, whereas much longer corrugations are simply 
doublicated by the free surface shape. In the resonant cases, a discontinuous change in the phase 
relative to the wall is observed. This behavior could be associated with small-scale variations of 
the wall shear stress and of the liquid velocity at the free surface, with interesting implications in 
heat and mass transfer processes. For  a near-horizontal wall, a qualitatively similar behavior is 
calculated, transposed to slightly longer waves. 

The small characteristic length of the described interaction points to the importance of the wall 
microstructure. In this context, it is interesting to note that the small-scale geometry of structured 
packings (used in mass-transfer equipment) and of heat-transfer surfaces has been shown by 
practice to have a significant effect on their performance. 

The present results are of theoretical interest as they indicate a striking qualitative difference 
between Stokes flow and low Re laminar flow. Their practical significance depends on the nonlinear 
behavior of the system. Indeed, the amplifications computed are finite and wall amplitudes 
satisfying the linearity constraint (a/h << 1) are too small to make the linear phenomenon observable. 
However, if similar amplifications prevail for higher (nonlinear) wall disturbances, it is reasonable 
to expect that the phenomenon will be easily observed. This is an open question which provides 
motivation both for nonlinear analysis and experiments. 
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